
Master of Computer Applications
II - Semester

315 24

Directorate of Distance Education

RDBMS LAB

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Author

Dr. Kavita Saini, Associate Professor, School of Computer Science & Engineering, Galgotias University, Greater Noida.

"The copyright shall be vested with Alagappa University"

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: 7361, Ravindra Mansion, Ram Nagar, New Delhi 110 055
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE1-291/Preparation and Printing of Course Materials/2018 Dated 19.11.2018 Copies - 500

RDBMS LAB

BLOCK 1: TABLE MANIPULATION

1. Table Creation, Renaming a Table, Copying another Table, Dropping a Table

2. Table Description: Describing Table Definitions, Modifying Tables, Joining Tables, Number and Date Functions.

BLOCK 2: SQL QUERIES AND SUB QUERIES

3. SQL Queries: Queries, Sub Queries, and aggregate functions

4. DDL: Experiments using database DDL SQL statements

5. DML: Experiment using database DML SQL statements

6. DCL: Experiment using database DCL SQL statements

BLOCK 3: INDEX AND VIEW

7. Index : Experiment using database index creation, Renaming a index, Copying another index, Dropping a index

8. Views: Create Views, Partition and locks

BLOCK 4: EXCEPTION HANDLING AND PL/SQL

9. Exception Handling: PL/SQL Procedure for application using exception handling

10. Cursor: PL/SQL Procedure for application using cursors

11. Trigger: PL/SQL Procedure for application using triggers

12. Package: PL/SQL Procedure for application using package

13. Reports: DBMS programs to prepare report using functions

BLOCK 5 : APPLICATION DEVELOPMENT

14. Design and Develop Application: Library information system, Students mark sheet processing, Telephone directory

maintenance, Gas booking and delivering, Electricity bill processing, Bank Transaction, Pay roll processing. Personal

information system, Question database and conducting Quiz and Personal diary

Introduction

NOTES

Self-Instructional
4 Material

INTRODUCTION

Rapid globalization coupled with the growth of the Internet and information
technology has led to a complete transformation in the way organizations function
today. Organizations require those information systems that would provide them a
‘competitive strength’ by handling online operations, controlling operational and
transactional applications, and implementing the management control tools. All
this demands the Relational Database Management System or RDBMS which
can serve both the decision support and the transaction processing
requirements. Technically, the present RDBMS handles the distributed
heterogeneous data sources, software environments and hardware platforms.
Precisely, RDBMS is a Database Management System or DBMS that is based
on the relational model introduced by E. F. Codd.

The most widely used commercial and open source databases are based
on the relational model. Characteristically, a RDBMS is a DBMS in which data is
stored in tables and the relationships among the data are also stored in tables. This
stored data can be accessed or reassembled in many different ways without having
to change the table forms. RDBMS program lets you create, update and manage
a relational database. In spite of repeated challenges by competing technologies,
as well as the claim by some experts that no current RDBMS has fully implemented
relational principles, the majority of new corporate databases are still being created
and managed with an RDBMS. So, understanding RDBMS through lab manuals
has become extremely important.

This Lab Manual is intended for the students of MCA in the subject of
RDBMS. This manual typically contains practical/Lab Sessions related to RDBMS,
covering various aspects related to the subject to enhanced understanding. Students
are advised to thoroughly go through this manual rather than only topics mentioned
in the syllabus as practical aspects are the key to understanding and conceptual
visualization of theoretical aspects covered in the textbooks.

NOTES

Self-Instructional
Material 1

RDBMS LabA Database Management System (RDBMS) is a collection of database and
stored procedures. A RDBMS enables you to store, extract and manage important
information from a database. It is software that is used to maintain data security
and data integrity in a structured database.

As mentioned earlier in section RDBMS helps in maintaining and retrieving
data in different form. There are various tools available for RDBMS such as Oracle,
INGRES, Sybase, Microsoft SQL Server, MS-Access, IBM-DB-II, and My
SQL.

Application of DBMS in various fields

In day to day life, various applications are in use. Few of the application are
given below where database is used:

 Banking: For account holder information, amount with draw and deposit,
load and other transactions.

 Airlines: For reservations, cancelation, fare detail and airline schedules.

 Universities: For student registration, examination, fee detail, course detail
and other information.

 Manufacturing: For inventory, production, sale and purchase orders

 Human Resources: Employee records, salaries, tax deductions,
allowances

 Multimedia application

 Real Time Application

 Graphical Information System (GIS)

Introduction to Oracle

Oracle is a secure portable and powerful database management system of Oracle
Corporation. Oracle Corporation is an American multinational computer technology
corporation headquartered in Redwood Shores, California. Oracle Database is
compatible and connectable with almost all operating systems and machine. It is
based on relational data model and a non-procedural language called structure
query language (SQL). It is a tool that supports storing managing and organization
the data.

Getting Started with SQL:

To work with SQL *Plus Oracle should to be installed on computer system. The
following steps are required to follow to invoke SQL plus:

1. Click on Start button

2. Click on All Programs

3. Click on Oracle Database 10g Express Edition

4. Click on Go to Database Home Page

RDBMS Lab

NOTES

Self-Instructional
2 Material

See the screenshots given below.

Click on Go to Database Home Page

NOTES

Self-Instructional
Material 3

RDBMS LabThe following Screen will appear:

Note:

1. Enter the User Name and password (Consult to your Lab Instructor for
user name and password).

2. Click on “Login” button.

The following screen will appear. Click on SQL.

After clicking on SQL, following screen will appear. Click on SQL
Command.

RDBMS Lab

NOTES

Self-Instructional
4 Material

 After clicking on SQL Command, following command screen will appear,
where we can type and run all SQL commands:

Data Types in Oracle

When you define any table, it is required to specify the data type of fields. The
main categories of data types are:

Data Type Size
Char (size) Maximum size of 2000 bytes
Varchar2 (size) Maximum size of 4000 bytes
Long Maximum size of 2GB
Raw (size) Maximum size of 2000 bytes
long raw (size) Maximum size of 2GB
Number(p,s) Precision can range from 1 to 38.

Scale can range from -84 to 127.
Date A date between Jan 1, 4712 BC

and Dec 31, 9999 AD.

Operators in Oracle

Operators are the special characters that manipulate data items to produce some
result. These data items are called operands. Operators are classified into two
categories:

1. Unary Operators

2. Binary Operators

1. Unary Operators

A unary operator operates only on one operand. A unary operator is used as
shown below:

Syntax:

Operator operand

NOTES

Self-Instructional
Material 5

RDBMS Lab2. Binary Operators

A binary operator operates on two operands. A binary operator is used as
shown below:

Syntax:

Operand1 operator operand2

There are various types of operators to cater different purpose which includes:

 Arithmetic Operators

 Comparison Operators

 Logical Operators

 Set Operators

 Concatenates Operator

Creating a Table

DDL (Data Definition Language) is the subset of SQL commands used to modify,
create or remove ORACLE database objects, including tables.it is used to define
the structure of a table. In a table structure you define various fields, their data
types and constraints as per the requirement.

Syntax:
Create table <table_name >

(column_name data type(size), column_name data
type(size),……);

Example 1: Create a table Course with the fields, data types and constraints as
shown below.

Column Name Data Type Size
c_code varchar2 15
c_name varchar2 15
duration number 8
free number 10,2

The window below shows the query for creating the table as specified and
Oracle will prompt a message.

RDBMS Lab

NOTES

Self-Instructional
6 Material

Example 2: Create a table Student with the fields, data types and constraints as
shown below.

Column Name Data Type Size
Roll_No Varchar 10
Name Varchar 10
Address Varchar 35
C_Code Varchar 8

The window below shows the query for creating the table as specified and
Oracle will prompt a message.

Rename Tables

The Syntax for renaming the table name is:
Rename old_table_name to new_table_name;

Example 3: Write a query to rename table student to student_MCA.

NOTES

Self-Instructional
Material 7

RDBMS LabDropping a Table

When a SQL table is no more required, you can delete it using DROP command.
Drop command is used to drop any object such as table, index, view, package
and function.

Syntax:
Drop table <table_name >

Example 4: Write a query to drop table course.

Truncate a Table

This command will remove all the records from a table. But structure will remain
same.

Syntax:
Truncate Table <Table name>

Example 5: Write a query to truncate table Student.

RDBMS Lab

NOTES

Self-Instructional
8 Material

Describe the Table

Describe command is used to describe the structure of a table created in the
database.

Syntax:
Describe <table_name>

Or

Desc <table_name>

Example 6: Write a query to see the structure of course table.

Or

NOTES

Self-Instructional
Material 9

RDBMS LabModifying a Table

SQL provides an ALTER command to modify a table structure. It is a Data
Definition Language (DDL) command. Following are the few examples to modify
a table structure.

Add a New Column

Syntax:
Alter table <table_name >

ADD (column_name data type(length), column_name data
type(length), …);

Example 7: Write a query to add new column (mobile Number (10)) in table
student.

RDBMS Lab

NOTES

Self-Instructional
10 Material

You can see the new structure of student table as shown below.

Change Data Type of an Existing Column

Syntax:
Alter table <table_name> modify (column data type (length),

column data type (length),…);

Example 8: Write a query to change the data type of column c_code from varchar
to char (15).

NOTES

Self-Instructional
Material 11

RDBMS LabModify the Length of an Existing Column

Syntax:
Alter table <table_name> modify (column data type (length),

column data type (length),…);

Example 9: Write a query to change the length of columns name varchar (20),
address Varchar(40) in table student.

After altering student table structure will look like as shown below:

Important points to Remember

 If table column contains the values, then the length of column could be
increase.

RDBMS Lab

NOTES

Self-Instructional
12 Material

 To change the data type column should be empty.

 To decrease the size of data type column should be empty.

Delete any Column

Syntax:
Alter table <table name> drop column column_name;

Example 10: Write a query to drop column mobile in table student.

Data Constraints

It is very important that whatever you store into your tables is as per the need of
your organization. No false or incorrect data is stored by the user even intentionally
or accidentally. Constraints are the restriction that you could put on your data to
maintain data integrity. For example employer’s salary should not be negative
value, two students should not have the same enrollment number etc. The constraints
helps in maintaining data integrity. Constraints could be specified when a table is
created or even after the table is created with the ALTER TABLE command.

Oracle provides various types constraints as listed below:

 Primary Key

 Foreign Key or Reference Key

 Not Null

 Unique

 Check

 Default

NOTES

Self-Instructional
Material 13

RDBMS LabConstraint could be defined at column level or at the table level. The only
difference between these two is the syntax of these two.

Note: Drop all table created previously in this manual.

Not Null constraint

In database, NULL is a special value that is different from zero, space or blank. It
represents an unknown value for the column. The NOT NULL constraint ensures
that the value in column is not missing (NULL). This constraint enforce user to
enter data into a specified column. A column with this constraint could have duplicate
values but could not be NULL or empty.

You must have created your e-mail ID. When you create an e-mail ID, it is
mandatory to fill certain entries (the field with *), these fields are the fields with the
not null constraint.

Example 11: Create a table book with the NOT NULL constraint with the structure
as shown below.

Column Name Data Type Size Constraint
B_Code varchar2 15
Title varchar2 40 NOT NULL
Author varchar2 15 NOT NULL
Price number 7,2

The SQL command to create table with NOT NULL constraint is given in
window shown below.

RDBMS Lab

NOTES

Self-Instructional
14 Material

The structure of table book is given below.

The above SQL command will create a table book where Title and Author
have NOT NULL constraints. These constraints would make it sure that both the
columns have some values during inserting and updating of data to these columns.

Note: NOT NULL constraints can be set at column level only.
Unique Constraint

Sometimes, it is required that column must have unique values only. The unique
constraint ensures that data to the specified column data is not duplicate but it
could contain the NULL values. Let us take an example of contact number and e-
mail ID; it is not necessary that every student has a contact number and an e-mail
ID, if they have that will be unique only.

Example 12: Create a table student with the UNIQUE constraint with the
structure as shown below.

Column Name Data Type Size Constraint
Roll_No Varchar 10
Name Varchar 10
Address Varchar 35
E_Mail Varchar 20 Unique
Mobile Number 10 Unique

NOTES

Self-Instructional
Material 15

RDBMS LabThe SQL command to create table with Unique constraint is given in window
shown below.

Primary Key Constraint

A primary key constraint is used to uniquely identify each and every record in a
table. A primary key has properties of unique and not null constraints.

A primary key constraint has the following properties:

 A primary key column allows unique values only.

 It does not allow NULL value in column.

 A primary key column could be used for a reference in another table
(child table).

Example 13: Create a table course having the Primary Key constraint with the
structure as shown below.

Column Name Data Type Size Constraint
c_code varchar2 15 Primary Key
c_name varchar2 15
duration number 8
fee number 10,2

RDBMS Lab

NOTES

Self-Instructional
16 Material

The SQL command to create table with Primary Key constraint is given in
window shown below.

The query in window will create table course which contains a primary key
field course code. Here primary key constraint will enforce the end user to enter
unique and not null values only.

Example 14: Create a table book with the Primary Key constraint with the structure
as shown below.

Column Name Data Type Size Constraint
B_Code varchar2 15 Primary Key
Title varchar2 40
Author varchar2 15
Price number 7,2

The SQL command to create table with Primary Key constraint is as follows:

Note: A table can have only one primary key.

NOTES

Self-Instructional
Material 17

RDBMS LabForeign Key Constraint or Reference Key Constraint

A foreign key column in a table derived values from a primary key of another table
that helps in establishing relationship between tables.

A table having primary key column is called a Master Table or a parent
table and a table with the reference key is known as a Transaction Table or a child
table.

C_code and B_code are the primary key of the tables course and book
respectively. These columns can be used to as a reference key in another table.

Important Points to Remember

 Reference key column in a table must have the same data type be as specified
in primary key column in another table.

 Size of data type must be the same or more as defined in a primary key
column.

 Name of reference key column could be same or different as defined in
primary key column.

 A table may contain more than one reference keys.

 Reference keys column values could be duplicate or not NULL.

 Reference keys column can have the same values as stored in primary key
column.

Suppose that students can enrolled in the course which are offered by the
university. Course table contains the detail of all the courses offered by the university,
so C_code column in student table must have reference of C_code column of
course table.

Example 15: Create a table student with the Reference Key constraint with the
structure as shown below.

Column Name Data Type Size Constraint
Roll_No Varchar 10
Name Varchar 10
Address Varchar 35
C_code Varchar 15 Reference Key

The SQL command to create table with REFERENCE KEY constraint is
as follows:

RDBMS Lab

NOTES

Self-Instructional
18 Material

Note: drop student table

Now create Student table again with reference key as shown below:

The above command will create table student which contains a reference
key column course code. This column will create reference of course code of
course table, when record in student table will be inserted or updated by the
user.

Note: A table can have more than one reference keys.

Check Constraint

A check constraint enforce user to enter data as specified condition. For example
marks in any subject should be between the ranges 0 to 100, fee should not be
negative, book code must start with ‘B’, and book price should be between the
ranges 1 to 15000 and employee HRA could not be more than 40% of basic
salary and so on.

NOTES

Self-Instructional
Material 19

RDBMS LabExample 16: Create a table book with the Check constraint with the structure as
shown below:

Column Name Data Type Size Constraint
B_Code varchar2 15 Check
Title varchar2 40
Author varchar2 15
Price number 7,2 Check

Note: drop table book created earlier.

The SQL command to create table with Check constraint is given in window
shown below.

Default Constraint

Sometimes, the value of any column for every new record is same. To maintain the
status of book in a library either it is available to issue or not, you must keep the
status of book as ‘T’ (available) or ‘F’ (Issued). Every new book purchased for
library, the status of book is required to be ‘T’. Default value concept is suitable
for these types of situations.

Example 17: Create a table book with the Default constraint with the structure as
shown below.

Column Name Data Type Size Constraint
B_Code varchar2 15
Title varchar2 40
Author varchar2 15
Price number 7,2
Status Char 1 Default

RDBMS Lab

NOTES

Self-Instructional
20 Material

The SQL command to create table with Default constraint is given in window
shown below.

Example 18: Create a table student with multiple constraints having the structure
as shown below:

Column Name Data Type Size Constraint
Roll_No Varchar 10 Primary Key
Name Varchar 10 Not Null
Address Varchar 35
C_code Varchar 15 Reference Key
Mobile Number 10 Unique

Note: drop student table then create student table again

The SQL command to create table as specified above is shown below:

NOTES

Self-Instructional
Material 21

RDBMS LabData Manipulation Language (DML)

Data Manipulation Language (DML) commands are used to insert, manipulate
and access data. The data manipulation language statements are Insert, Delete,
and Update.

Insert Records in a Table

Syntax:
Insert into <table name> values (value1, value2, …);

Example 19: Insert (course code – PG001, course name- MCA, duration- 3,
fee-32000) in the course table.

Output:

After executing the above command system will prompt a message 1 row
inserted.

Note: All char, varchar and date values should be enclosed in single quotes
(‘) for example ‘MCA’ , ‘07-Sept-09’, ‘A-08-02’, …

RDBMS Lab

NOTES

Self-Instructional
22 Material

Try yourself:
1. Insert into course values (‘PG003’,’M Sc-IT’,3,32000.00)
2. Insert into course values (‘PG002’,’MBA’,2,40000.00)
3. Insert into course values (‘UG002’,’B SC-IT’,3,25000.00)
4. Add five records in course table.
5. Create a new table Book with the following fields and data types.

Field Name Data Type Size
B_Code varchar 15
Title varchar 30
Author varchar 15
Price Number 6,2

6. View the structure of Book table.
7. Add five records in Book table.

Insert Data into Specific Fields

In the insert command shown above, it is necessary to insert data in all the fields in
the same sequence as defined in the table. But sometimes, few fields are required
to update later on. For example, student’s subjects marks are inserted in the table
and total, percentage or grade is required to calculate later on.

Syntax: (to insert data into selected fields only)
Insert into <table name> (column1, column2, …)

values (value1, value2, …);

Example 20: Write a query to insert (roll_no= ‘A-08-20’, name=’John’, address=
‘delhi’) in the student table.

NOTES

Self-Instructional
Material 23

RDBMS LabInsert Data with User Interaction

If hundreds or thousands of records are to be inserted in a table, it will be very
tedious job to do it with the constant values. The other ways to insert records into
table is take input from the user and repeat the command.

Example 21: Insert into course values (‘&C_code’, ‘&C_name’, &duration,
&fee);

The same command cab be repeated to insert more records by putting /
and pressing enter key at SQL prompt.

You can also insert records interactively into specific fields as shown below.

Example 22: Insert into student (roll_no, name, address) values (‘&roll_no’,
‘&name’, ‘&address’);

Note: The & symbol would prompt user to input data to the various variable.
The variable name that is written after & is not required to the same as field
names.

RDBMS Lab

NOTES

Self-Instructional
24 Material

Try yourself:

1. Add the following data into C_code, C_name and duration fields of Course
table.

C_code C_name Duration

UG001 BCA 3

UG002 B Sc-IT 3

PG003 M Sc-IT 2

2. Add 10 records into student table with the user interaction.

3. Add data into b_code, title, and author fields of book table with the user
interaction.

Display Table Records

Select command is used to display the records in the table. All the fields and
records could be displayed or only selective records and fields could be retrieved.

To view all the Records

To retrieve all the recoeds use “*” as shown below:

Syntax:
Select * from <table name>;

Example 23: Write a query to display all the records in the course table.

NOTES

Self-Instructional
Material 25

RDBMS LabTo View Selected Columns

To view only selective columns, enter column names separated by comma (,) as
shown below:

Syntax:
Select field1, field2, ….from <table_names>;

Example 24: Write a query to display the column c_name and fee in the course
table.

Update Table Records

Update command is used to change or update the records in a table. For example,
the contact no. or address of any person has been changed or course fee is changed
by the university.

Syntax:
Update <table name>

Set <column_name1 = <new value>,

 <column_name2=<new value,

 …

[where <condition>];

RDBMS Lab

NOTES

Self-Instructional
26 Material

Example 25: Write a query to update fee=32000 having course code ‘UG001’
in the course table.

Where clause is used to specify the condition for which this fee should be
changed. Without any condition all the records will be updated with the new fee
Rs. 32,000.

More than one columns can also be updated by specifying multiple columns
and there new values after set keyword.

NOTES

Self-Instructional
Material 27

RDBMS LabExample 26: Write a query to change address to madras and course code to
‘PG001’ having roll_no= ‘A-08-20’ in the student table.

Try yourself:

1. Display name and c_code of students.

2. Change the address from Madras to Delhi of student whose roll
number is A-08-20.

3. Change the fee from Rs. 32000 to Rs. 38000 of course where
c_code is PG001.

Delete Records

Delete command is used to delete records from the table. One or more or all the
records can be deleted from the table depending upon the where condition.

Syntax:
Delete <table_name> [where <condition>];

Or

Delete from <table_name> where <condition>];

RDBMS Lab

NOTES

Self-Instructional
28 Material

Example 27: Write a query to delete a record from the course table where
course code is ‘PG002’.

To delete all the records from a table, you can write the delete command
without where clause as given below:

Delete from course;

Or

Delete course;

The above command will delete all the records from the course table.

NOTES

Self-Instructional
Material 29

RDBMS LabView the Existing Tables

To view all the existing tables in database, you can use Tab. Tab is a view which
displays the name and type of object such as table, view, or synonym.

Example 28: Write a query to display all the tables in the database.

TNAME is a column which displays the object name as table, view, index,
or synonym.

TABTYPE is a column which displays the type of object. The type of
object may be any table, view, index, or synonym.

Filtering Records using Where Conditions

A university can have thousands of records but all these records are not required
to view every time. Many users might need to view different records from the
same table at different time. To filter various records of table, where clause can be
used with conditional, logical and other operators.

Syntax:
Select * from <table name> [where <condition>];

RDBMS Lab

NOTES

Self-Instructional
30 Material

The following is the course table contains 8 records. Let us filter records
from this table with different conditions.

C_CODE C_NAME DURATION FEE
PG001 MCA 3 55000
PG007 M Sc-CS 2 50000
UG001 BCA 3 32000
UG002 B Sc-IT 3 25000
PG003 M Sc-IT 2 48000
PG002 B Tech-CS 4 60000
PG004 B Tech-EC 4 64000
PG005 B Tech-IT 4 58000

Conditional Operators in SQL

Equal to (=)

To see the detail of course where course code equal to PG003 then the
query will be:

Select * from course where c_code=’PG003';

Output of the above query is shown below:

NOTES

Self-Instructional
Material 31

RDBMS LabNot Equal to (<>, !=)

To see the detail of course where course duration is not 4 years then the query will
be:

Select * from course where duration <> 4;

Output of the above query is shown below:

Greater Than (>)

To see the detail of course where course fee is greater than Rs. 50000 then the
query will be:

Select * from course where fee >50000;

RDBMS Lab

NOTES

Self-Instructional
32 Material

Output of the above query is shown below:

Similar to operators, equal to, not equal to and greater than operators are
used to filer records. Other operators like less than, less than equal to, greater
than equal to can be used.

Other Operators in SQL

BETWEEN

The BETWEEN operator filters the records between a given range. Suppose you
want to filter the courses where fee is in between Rs. 45000 to Rs. 58000. The
query to retrieve such records is given below:

Select * from course where fee between 45000 and
58000

NOTES

Self-Instructional
Material 33

RDBMS LabOutput of the above query is shown below:

The between operators can filter the numbers, text, or date values.

NOT BETWEEN

The NOT BETWEEN operator filters the records where the data is not in between
a given range.

Select * from course where fee not between 45000 and
58000

RDBMS Lab

NOTES

Self-Instructional
34 Material

Output of the above query is shown below:

Oracle Functions

Oracle provides various built in functions for different purpose such as calculation,
comparison and conversion of data. Functions may or may not have the arguments
(input) and have the capability to return a value.

Basically there are two types of function:

 Aggregate Functions

 Scalar functions

Aggregate Functions

Aggregate functions work on a group of values (a column values) and returns a
single value.

Few aggregate functions are listed below:

 SUM()

 MAX()

 MIN()

 AVG()

 COUNT()

NOTES

Self-Instructional
Material 35

RDBMS LabScalar functions

SQL scalar functions return a single value, based on the input value.

Few scalar functions are listed below:

 MID()

 LEN()

 Upper()

 Lower()

Consider a table course with the following records:

C_CODE C_NAME DURATION FEE
PG002 MBA 2 40000
PG006 MBA 2 50000
PG007 M Sc-CS 3 32000
UG001 BCA 3 32000
UG002 B SC-IT 3 25000
PG003 M Sc-IT 3 32000
PG001 MCA 3 32000

Example 29: Write a query to find the total fee received in MBA course.

RDBMS Lab

NOTES

Self-Instructional
36 Material

Example 30: Write a query to find the minimum fee received in MBA course
from the course table.

Example 31: Write a query to find the maximum fee received in MBA course
from the course table.

NOTES

Self-Instructional
Material 37

RDBMS LabExample 32: Write a query to count the number of records in course table where
c_name= ‘MBA’.

Example 33: Write a query to converts the text (i.e. Computer) to uppercase.

RDBMS Lab

NOTES

Self-Instructional
38 Material

Example 34: Write a query to converts the text (i.e. COMPUTER) to lowercase.

Example 35: Write a query to round the figure (i.e. 1.23456).

NOTES

Self-Instructional
Material 39

RDBMS LabExample 36: Write a query to find the square root of 49.

Join Commands

Table 1:
create table student1(rno number(10),name char(30),course
char(30),fee number(10));

insert into student1 values(101,’NAMAN’,’B.tech’,59000);

insert into student1 values(102,’AMAN’,’B.tech’,59000);

insert into student1 values(102,’SITA’,’BCA’,49000);

insert into student1 values(105,’GITA’,’MCA’,59000);

select * from student1

RNO NAME COURSE FEE
101 NAMAN B.tech 59000
102 AMAN B.tech 59000
103 SITA BCA 49000
105 GITA MCA 59000

Table 2:

create table marks1(rno number(10),sub1 number(10),sub2
number(10),sub3 number(10),total number(10));

insert into marks1 values(101,50,40,40,130);

insert into marks1 values(103,60,40,40,140);

insert into marks1 values(105,50,40,50,140);

select * from marks1

RNO SUB1 SUB2 SUB3 TOTAL
101 50 40 40 130
103 60 40 40 140
105 50 40 50 140

RDBMS Lab

NOTES

Self-Instructional
40 Material

EQUI JOIN

Example 37: Write a query to display roll no., name, sub1, sub2, sub3 and total
form the table student1 and marks1 where student1.rno=marks1.rno.

Select student1.rno, name, sub1, sub2, sub3, total from
student1,marks1 where student1.rno=marks1.rno;

Output:

RNO NAME SUB1 SUB2 SUB3 TOTAL
101 NAMAN 50 40 40 130
103 SITA 60 40 40 140
105 GITA 50 40 50 140

Left Outer Join

select student1.rno,name,sub1,sub2,sub3,total from
student1 left outer join marks1 on student1.rno=marks1.rno;

OR

select student1.rno,name,sub1,sub2,sub3,total from
student1,marks1 where student1.rno=marks1.rno(+);

RNO NAME SUB1 SUB2 SUB3 TOTAL
101 NAMAN 50 40 40 130
103 SITA 60 40 40 140
105 GITA 50 40 50 140
102 AMAN - - - -

Table Project:

insert into project values(102,’Railway’,’Manager’);

insert into project values(106,’AI’,’Coder’);

select * from project

Right Outer Join
Select student1.rno, project.rno, name,pname from student1
right outer join project on student1.rno=project.rno;

OR

Select student1.rno, name, sub1, sub2, sub3, total from
student1, marks1 where student1.rno(+)=marks1.rno;

RNO RNO NAME PNAME
102 102 AMAN Railway
- 106 - AI

NOTES

Self-Instructional
Material 41

RDBMS LabFull Outer Join
Select student1.rno, project.rno, name, pname from student1
full outer join project on student1.rno= project.rno;

RNO RNO NAME PNAME
102 102 AMAN Railway
103 - SITA -
105 - GITA -
101 - NAMAN -
- 106 - AI

Data Control Language (DCL)

Data Control Language are the commands that allow authorized database users
to share the data with other users. The shared data can be accessed or manipulated
by other users as per the permission granted.

The data manipulation language statements are GRANT and REVOKE

 GRANT-provides user’s access privileges to database.

 REVOKE-withdraw user’s access privileges given by the GRANT
command.

Oracle Transactions

All the changes made through DML commands are known as transaction. A
transaction is a logical group of work. Transactions that you do on a database
temporarily stored on the client machine that can be make permanent or canceled
by the user. Oracle provides few commands to control the transactions as given
below:

 Commit

 Savepoint

 Rollback

Commit

The commit command is used to make the transaction permanent to the database.
The commit command ends the current transactions.

SQL > Commit;

Rollback

The rollback command is used to terminate the current transaction. All the changes
made to the rollback database can be undone by rollback. It is generally used
when a session disconnects from the database without completing the current
transaction.

 SQL > rollback;

When rollback command is executed, Oracle prompts a message as shown below:
Rollback complete.

* Rollback undone the whole transaction made after the last committed
transaction.

RDBMS Lab

NOTES

Self-Instructional
42 Material

Index

An index is a performance-tuning method of allowing faster retrieval of records.
An index creates an entry for each value that appears in the indexed columns. By
default, Oracle creates B-tree indexes.

Syntax:

The syntax for creating an index in Oracle/PLSQL is:

CREATE [UNIQUE] INDEX index_name

 ON table_name (column1, column2, ... column_n)

 [COMPUTE STATISTICS];

UNIQUE refers to the combination of values in the indexed columns must
be unique, Compute Statistics tells Oracle to collect statistics during the creation
of the index. The statistics are then used by the optimizer to choose a “plan of
execution”, when SQL statements are executed.

Example 38: An example to create an index in Oracle/PLSQL.
Create index employee_idx

ON employee (name);

In this example, we’ve created an index on the employee table called
employee_idx. We can also create an index with more than one field as in the
example below:

CREATE INDEX student_idx ON student(name);

NOTES

Self-Instructional
Material 43

RDBMS LabWe can also choose to collect statistics upon creation of the index as follows:
CREATE INDEX student_idx ON student(name) COMPUTE
STATISTICS;

Rename an Index

Syntax:

The syntax for renaming an index in Oracle/PLSQL is:

ALTER INDEX index_name

 RENAME TO new_index_name;

RDBMS Lab

NOTES

Self-Instructional
44 Material

Example 39: An example of how to rename an index in Oracle/PLSQL.

Drop an Index

Syntax: The syntax for dropping an index in Oracle/PLSQL is:

DROP INDEX index_name;

Example 40: An example of how to drop an index in Oracle/PLSQL.

NOTES

Self-Instructional
Material 45

RDBMS LabView

A view is a virtual table based on the result-set of an SQL statement. A view
contains rows and columns, just like a real table. The fields in a view are fields
from one or more real tables in the database.You can add SQL functions, WHERE,
and JOIN statements to a view and present the data as if the data were coming
from one single table.

A view is a virtual table, which consists of a set of columns from one or
more tables. It is similar to a table but it doesn’t not store in the database. View is
a query stored as an object.

Syntax:

CREATE VIEW view_name AS SELECT set of fields FROM
relation_name WHERE (Condition)

Example 41: Write a query to create a view Student_view having fields roll number,
name, mobile using table student.

RDBMS Lab

NOTES

Self-Instructional
46 Material

Display Records from View

Example 42: To display the records from view.

Drop View

Syntax:
Drop View View_name;

Example 43: Write a query to drop student_view.

NOTES

Self-Instructional
Material 47

RDBMS LabPL/ SQL

PL/ SQL is also known as an embedded SQL and is a superset of SQL. PL/ SQL
is an acronym of Procedural Language/Structure Query Language. It supports
procedural features and SQL commands.

Structure of PL/ SQL Program

PL/ SQL program block is divided in three sections.

1. Declaration section

2. Execution section

3. Exception handling section

Declaration Section

In declaration section, variables, constants, user defined exceptions, cursor and
other objects are declared. This is an optional section. This section begins with the
keyword DECLARE.

Execution Section

All the executable statements such as SQL statements, control statements, loops
are written under this section. This is a mandatory section. This section begins with
the keyword BEGIN and ends with the keyword END.

The Exception Handling Section

During program execution many abnormal situations may occur. To handle these
situations, statements are written in this block. These situations are known as errors
which occur due to the logical error, syntax error or system error. This is an optional
section.

RDBMS Lab

NOTES

Self-Instructional
48 Material

Syntax:
DECLARE
 declaration_statements
 …
BEGIN
 executable_statements
 …
EXCEPTION
 exception_handling_statements
 …
END ;
..

PL/ SQL Engine

Oracle uses a PL/ SQL engine to processes the PL/ SQL statements. Either the
PL/ SQL program is stored on the client side or on the server side. PL/ SQL
engine is used by Oracle to execute the program statements.

Data Types in PL/ SQL

A program has many inputs and outputs in the form of variable and constant.
These variable and constant specifies the storage format, type of value and a
range of the values that can be stored. PL/ SQL provides various data types
which are system defined and also gives the flexibility to the programmer to create
their own data types.

Classification of Data Types

 Scalar Data Types

 Composite Data Types

NOTES

Self-Instructional
Material 49

RDBMS LabComments in PL/ SQL

In Oracle, comments may be introduced either for single line or for multiple lines.

1. /*...*/ is used for multiple line comments.

2. - - is used for single line comments.

The example for single line comment is given below :

- - This is a PL/ SQL program to calculate employee salary

Variables in PL/ SQL

Variables are the identifiers of data type. These variables could be the identifiers of
either system defined (scalar) data types or the identifiers of user defined (composite)
data type i.e. record, table or Varray.

Variable declaration can be of any data type. For example:

Name char (30) ;

Salary Number (8, 2) ;

Date_of_join Date ;

Constants can be of any data type. For example:

Pi constant number (3, 2) := 3.5 ;

Status Booleans := TRUE ;

Pi and Status are assigned with a value during declaration, makes them
constant.

Example 44: Write a PL/SQL program to display ‘’First PL/SQL Program’.

Click on Run button to run program.

Output:

RDBMS Lab

NOTES

Self-Instructional
50 Material

Example 45: Write a PL/SQL program to display sum of two numbers given at
run time.

After running this program it will show input screen as shown below:

Enter values in text boxes and click on Submit button.

Output:

NOTES

Self-Instructional
Material 51

RDBMS LabExample 46: Write a PL/SQL Program to print Prime Number.

Input:

RDBMS Lab

NOTES

Self-Instructional
52 Material

Output:

Example 47: Write a PL/SQL Program to find factorial of a number given number.

Input:

NOTES

Self-Instructional
Material 53

RDBMS LabOutput:

Try Yourself:

1. Write PL/SQL program to display demonstrate all sections of PL/SQL
program.

2. Write PL/SQL program to display HELLO.

Exception Handling

In PL/ SQL, error is called as exception. Error may occur due to various reasons
such as semantic error, hardware failure, system resources problems and many
other reasons. Due to these errors program terminates abnormally.

Types of Exception

1. Internal exception

2. User-defined exceptions

Table: Internal Exceptions

Exceptions Explanation
ZERO_DIVIDE This exception raised when PL/SQL program attempts to divide a

number by zero.
NO_DATA_FOUND This exception raised when SELECT INTO statement returns no

rows while expected to return.
CURSOR_ALREADY_OPEN This exception raised when you try to open a cursor which is

already.
INVALID_NUMBER This exception raised when, the conversion of a string into a number

fails because the string does not represent a valid number.
LOGIN_DENIED This exception raised when PL/SQL program attempts to log on to

Oracle with an invalid username and/or password.
NOT_LOGGED_ON This exception raised when PL/SQL program issues a database call

without being connected to Oracle.
STORAGE_ERROR This exception raised when PL/SQL runs out of memory.
TOO_MANY_ROWS A SELECT INTO statement returns more than one row while

expected only one.
VALUE_ERROR This exception raised when data type or data size is invalid.
PROGRAM_ERROR This exception raised when PL/SQL has an internal problem.
OTHERS This exception raised when error is unknown or not explicitly

defined.

RDBMS Lab

NOTES

Self-Instructional
54 Material

Example 48: Write a program to demonstrate exception handling.

Query returns more than one records then TOO_MANY_ROWS exception:

In the above program, select query is used to select book title into variable
B_title. Two internal exceptions are handled named NO_DATA_FOUND and
TOO_MANY_ROWS. If query returns more than one records then
TOO_MANY_ROWS exception would be raised by the system, if no record
matches then NO_DATA_FOUND exception would be raised.

User Defined Exceptions

You can assign a name to unnamed system exceptions using a Pragma called
Exception_Init as shown below:

Pragma Exception_Init (exception name, Oracle error
number);

In the above example, exception name is the user defined name of the
exception that will be associated with Oracle error number.

Syntax:
DECLARE

exception_name EXCEPTION ;

PRAGMA EXCEPTION_INIT (exception_name, Err_code);

BEGIN

Executable statement;

. . .

NOTES

Self-Instructional
Material 55

RDBMS LabEXCEPTION

 WHEN exception_name THEN

 Handle the exception

END;

Example 49: Write PL/SQL program to the given scenario given below:

Let’s consider the student table and course tables.

The c_code is a primary key in course table and c_code is a foreign key in
student table.

If you try to delete a c_code from course table and it has a corresponding
child records in student table an exception will be thrown with oracle code number
-2292.

child_record_exception is a user defined name of exception in the above example.

RAISE_APPLICATION_ERROR ()
A user can assign an error message by using

Raise_application_error () to make the error message more descriptive for
the end-user. It is a build-in procedure.

Example 50: Write a PL/SQL program to demonstrate User-defined Exceptions.

Other than the pre-defined exceptions, you can define your own exception
to validate data against business requirements. For example, if user wants to update

RDBMS Lab

NOTES

Self-Instructional
56 Material

total marks of student but subject marks are NULL, an error must be raised by
the system to alert the user.

A user defined exceptions must be declared within declaration section by
the keyword EXCEPTION and must be raised explicitly by RAISE statement
within the executable section.

Create Table Marks:
Create table marks (roll_no number(3), sub1 number(3),
sub2 number(3), sub3 number(3), total number(3))

Insert values in roll_no, sub1, sub2, sub3 fields only:
insert into marks (roll_no, sub1 ,sub2, sub3) values
(101,34,54,43)

insert into marks (roll_no, sub1 ,sub2, sub3) values
(102,54,54,50)

insert into marks (roll_no, sub1 ,sub2, sub3) values
(104,65,44,40)

Select * from marks;

ROLL_NO SUB1 SUB2 SUB3 TOTAL
101 34 54 43 -
102 54 54 50 -
104 65 44 40 -

NOTES

Self-Instructional
Material 57

RDBMS LabIn the above example, null_marks is a user defined exception which must
be raised explicitly using RAISE statement. This exception would be raised, when
marks in any subject would be NULL.

Check student’s marks, after executing the above program:
select *from marks;

ROLL_NO SUB1 SUB2 SUB3 TOTAL
101 34 54 43 -
102 54 54 50 158
104 65 44 40 -

Try Yourself:

1. Write a PL/SQL code block that will accept an account number from the
user and debit an amount of Rs. 2000 from the account, if the account has
a minimum balance of 500 after the amount is debited.

2. Write a PL/SQL code block to calculate the area of the circle for a value of
radius varying from 3 to 7. Store the radius and the corresponding values of
calculated area in a table Areas.

Areas – radius, area.

3. Write a PL/SQL block of code for inverting a number 5639 or 9365.

4. Write a PL/SQL block of code to achieve the following: if the price of
Product ‘p00001’ is less than 4000, then change the price to 4000. The
Price changes to be recorded in the old_price_table along with Product_no
and the date on which the price was last changed. Tables involved:
product_master- product_no, sell_price.

Old_price_table- product_no,date_change, Old_price

Cursor

Oracle allocates a memory known as the context area for the processing of the
SQL statements. A cursor is a pointer or handle to the context area. Through the
cursor, a PL/SQL program can control the context area and what happens to it as
the statement is processed.

The three types of the cursors are:

1. Static cursors

2. Dynamic cursors

3. REF cursors

Static cursors are the ones whose select statements are known at the compile
time. These are further classified into:

 Explicit cursors

 Implicit cursors

RDBMS Lab

NOTES

Self-Instructional
58 Material

Example 51: Create a cursor to show roll number and total marks of students
from marks table using cursor.

Trigger

A trigger is a PL/ SQL code block that runs automatically when an event occurs.
An event in PL/ SQL is the data definition language such as INSERT, UPDATE or
DELETE.

Uses of a Trigger

A database trigger helps in maintaining the organization’s database in such a manner
that without executing the PL/ SQL code explicitly, it update and validate the data.
Triggers have the capabilities to provide a customized management system of
your database.

Database trigger can be used to cater the following purposes:

 To enforce integrity constraints (e.g. check the referenced data to
maintain referential integrity) across the clients in a distributed database

 To prevent generate invalid transactions in database.

 To update data automatically to one or more tables or views without
user interaction

NOTES

Self-Instructional
Material 59

RDBMS Lab Automatically generate derived column values

 To customize complex security authorizations.

 To permit insert, update or delete operations to a associated table only
during predetermined a date and time.

 Provide auditing

 Provide transparent event logging

 Helps in prompting information about various events taken on database,
events of users, and SQL statements to subscribe applications.

 Helps in maintaining replication of synchronous table

 Helps in gathering statistics on various table accesses.

Structure of PL/SQL Trigger

Syntax:
CREATE [OR REPLACE]

TRIGGER <trigger_name>

BEFORE (or AFTER)

INSERT OR UPDATE [OF COLUMNS] OR DELETE

ON table_name

[FOR EACH ROW [WHEN (condition)]]

DECLARE

Declaration statements

…

BEGIN

Executable statements

...

EXCEPTION

Exception handling statement

…

END;

A database trigger can also have declarative and exception handling parts.

How to Apply a Trigger

A database trigger has three sections namely a trigger statement, a trigger body
and a trigger restriction.

 Three of Parts of Trigger are:

1. A Trigger Statement

2. A Trigger Body Action

3. A Trigger Restriction

RDBMS Lab

NOTES

Self-Instructional
60 Material

Example 52: To Create a Trigger.

A company XYZ has the employee detail in employee table. Company wants to
have the history of all the employees who have left the organization. To store the
employee history, a new table emp_history is created with the same structure as
employee table.

The structure of employee table is shown below:

Column Name Data Type Size
EMP_CODE NUMBER 10
E_NAME Varchar2 15
DESIGNATION Varchar2 35
SALARY NUMBER 10,2
DEPTNO NUMBER 2

The employee table contains the following records:

EMP_CODE E_NAME DESIGNATION SALARY DEPTNO

7369 SMITH CLERK 15000 20

 7499 ALLEN SALESMAN 35000 30

 7521 WARD SALESMAN 32000 30

 7566 JONES MANAGER 55000 20

 7654 MARTIN SALESMAN 30000 30

 7698 BLAKE MANAGER 60000 30

 7782 CLARK MANAGER 64000 10

 7788 SCOTT ANALYST 58000 20

 7839 KING PRESIDENT 70040 10

 7844 TURNER SALESMAN 30430 30

 7876 ADAMS CLERK 23000 20

Create a Duplicate Table of Employee

To maintain the employee history, a table emp_history can be created with
the SQL command given below:

Create table emp_history as select * from employee where
emp_code is null;

You can see the structure of new table emp_history by giving command as
written below:

Desc emp_history;

NOTES

Self-Instructional
Material 61

RDBMS LabColumn Name Data Type Size
EMP_CODE NUMBER 10
E_NAME Varchar2 15
DESIGNATION Varchar2 35
SALARY NUMBER 10,2
DEPTNO NUMBER 2

Whenever any employee leaves the organization his or her detail will be

deleted from the employee table and the same record should be inserted into
emp_history table. A trigger can be associated on table employee on the event
delete.

The code for trigger is given below:

In the above example, emp_history is a trigger which is associated with
the employee table. This is a trigger which should be fired with delete command
on employee table and will store the deleted record in emp_history table.

Application:

To test whether the trigger is fired and insert the deleted record in emp_history
table delete few records from employee table as shown below:

SQL> delete from employee where emp_code = 7782;

SQL> delete from employee where emp_code = 7876;

SQL> delete from employee where emp_code = 7844;

RDBMS Lab

NOTES

Self-Instructional
62 Material

After executing the above queries, display all the records from the
emp_history table.

Select *from emp_history;

The above command would prompt the record as shown below:

EMP_CODE E_NAME DESIGNATION SALARY DEPTNO

 7782 CLARK MANAGER 64000 10

 7876 ADAMS CLERK 23000 20

 7844 TURNER SALESMAN 30430 30

Example 53: Before Insert Trigger

In the below example, a trigger is associated with the employee table. This trigger
would fire before inserting a new record in the table.

In the above example, insert_emp is a trigger which is associated with the
employee table. This is a trigger would fire on insert command on employee table
and would prompt new employee code and employee name before inserting it in
to employee table.

NOTES

Self-Instructional
Material 63

RDBMS LabApplication:

To test whether the trigger is fired and display message on screen, insert new
record into employee table as shown below:

SQL> Insert into employee (emp_code, e_name) values
(321,’Scott’);

When new record is inserted into employee table, system prompts the
message as shown below:

New employee Code inserted is :321

New employee Name inserted is :Scott

Note: The trigger would execute even if you insert data in all the fields
of employee table.

Example 54: To create IF Statement in Trigger.

A database trigger also use if statement. If statements in database triggers is used
to determine what statement caused the execution of the trigger, such as inserting,
updating or deleting a data from the associated table.

The general form of if statements in trigger are:

 If Inserting Then

 If Deleting Then

 If Updating Then

RDBMS Lab

NOTES

Self-Instructional
64 Material

In the above example, emp_trigger is a database trigger which is associated
with the employee table. This is a trigger having three if conditions to determine
what statement invoked it, and prompts an appropriate message in various cases.

Viewing Triggers

To view all the triggers created by the user, a data dictionary named
USER_TRIGGERS can be used.

To see all the triggers use select statement on USER_TRIGGERS as shown
below:

Select trigger_name from user_triggers;

For more description, you can also write the following command:
SQL> Select * from user_triggers;

Deleting a Trigger

Syntax:
SQL > Drop trigger < trigger name >

NOTES

Self-Instructional
Material 65

RDBMS LabExample 55: Write a query to delete a trigger from emp_history.

PL/ SQL Package

A package is a database object. It is a collection of various

database objects as procedures, functions, cursors, variables and constants.

There are two types of packages:

1. Built-in Packages

2. User defined Packages

Built-in Packages

Built-in Packages such as DBMS_OUTPUT, DBMS_SQL, DBMS_DDL,
DBMS_TRANSACTION etc. caters pre-defined functionality.

User defined Packages

User defined package serve the user as per the changed business needs.

A package consists of two parts:

 Package Specification

 Package Body

RDBMS Lab

NOTES

Self-Instructional
66 Material

Package Specification

In package specification one can declare variables, constants, exceptions, cursors,
sub-procedures and other database objects.

Syntax:
CREATE [or Replace] Package < package_name > IS <
declarations >

Begin

(Executable statements)

END <package_name >;

The sub-procedures declared in package specification must be declared in
package body.

Package Body

The actual implementation of declared sub-procedures and cursors is done in
package body. The sub-procedures declared in package
specification must be declared in package body.

Syntax: The CREATE BODY statement is as follows:
CREATE [or Replace] package < package_name > IS <
declarations >

Procedure < procedure_name > (variable data type);

Function < function_name > (variable data type) return
data type;

END < body_name >;

A Package Function

The example given below declares a function
getGrade which would accept an argument of varchar
data type and would return a value of varchar data
type.

NOTES

Self-Instructional
Material 67

RDBMS LabExample 56: To create or replace a package.

Step 1:

The above code will create a package with the name pkg_marksheet. This
package contains a function named getGrade. This function will accept an argument
of varchar type and will return a value of varchar type.

Package created.

Step 2:

The function pkg_marksheet is declared in package body as shown below:
create or replace package body pkg_marksheet as

function getgrade (rno varchar) return varchar IS

s1 number (3) ;

s2 number (3) ;

s3 number (3) ;

s4 number (3) ;

total number (3) ;

per number (3) ;

RDBMS Lab

NOTES

Self-Instructional
68 Material

begin

select sub1, sub2, sub3, sub4 into s1, s2, s3 , s4
from marks where roll_no = rno ;

total := s1 + s2 + s3 + s4 ;

per := total / 4 ;

if per >= 90 then

return ‘A+’ ;

elsif per >= 80 then

return ‘A’ ;

elsif per >= 70 then

return ‘A-’ ;

elsif per >= 60 then

return ‘B+’ ;

elsif per >= 50 then

return ‘B’ ;

elsif per >= 40 then

return ‘B-’ ;

elsif per >= 30 then

return ‘C’ ;

else

return ‘F’ ;

end if ;

end getgrade ;

end pkg_marksheet ;

/

The output of the above PL/ SQL code, when compiled is given below:

NOTES

Self-Instructional
Material 69

RDBMS LabCalling Package Function

To call the function declared in package specification, the reference of package
name need to give as given below:

An example to call a package function is as follows:

pkg_marksheet.getGrade (‘A-08-12’);

Where, pkg_marksheet is a package name in which a function getGrade is
declared which takes a varchar argument A-08-12.

A Package Procedure

The example given below declares a procedure
show_book_price which would accept an argument of
varchar data type.

Example 57: To create a package procedure.

Step 1:

The above code will create a package with the name book_price. This
package contains a procedure named show_book_price. This procedure will accept
an argument of varchar type.

Note: Procedure cannot return any value.

RDBMS Lab

NOTES

Self-Instructional
70 Material

The output of the above PL/ SQL code when compiled is given below:

Package created.

Step-2

Save the above program with the any name (let us suppose show_price)
and then run it.

The output of the above PL/ SQL code when compiled is given below:

Package body created.

Calling Package Procedure

To call the procedure declared in package specification, the reference of
package name need to give as shown below:

The Syntax to call a package procedure is as follows:

Package_name.procedure_name;

The example to call a package procedure is as follows :

book_price. show_book_price (‘B003’);

Where, book_price is a package name in which a procedure
show_book_price is declared which takes a varchar argument B003.

NOTES

Self-Instructional
Material 71

RDBMS LabReports using functions

A stored function always returns a result and can be called inside an SQL statement
just like ordinary SQL function. A function parameter is the equivalent of the in
procedure parameter, as functions use the RETURN keyword to determine what
is passed back. User-defined functions or stored functions are the stored procedures
which have the features of all procedures. They can accept parameters, perform
calculations based on data retrieved and return the result to the calling SQL
statement, procedure, function or PL/SQL program.

Create a Function

The syntax to create a function is as follows:

CREATE OR REPLACE FUNCTION function_name (function_params)

 RETURN return_type IS

Declaration statements

 BEGIN

 Executable statements

RETURN something_of_return_type ;

EXCEPTION

Exception section

 END;

Description of the Syntax

CREATE Function:

This is used to create a function, if no other function with the given name exists.

OR REPLACE Function:

OR REPLACE is used to re-create the function if the given function name already
exists. If no function exists with the given name, it creates the new function. You
can also use OR REPLACE clause to change the definition of an existing function
without dropping, re-creating and regranting privileges previously granted on the
function to other users. If you redefine a function, then Oracle Database recompiles
it.

IS:

It is similar to DECLARE in PL/SQL Blocks. Variables could be declared between
IS and BEGIN.

RETURN

Clause Function returns a value. The RETURN clause is used to specify the data
type of the return value of the function. Since every function must return a value,

RDBMS Lab

NOTES

Self-Instructional
72 Material

this clause is mandatory to use. The return value can have any data type supported
by PL/SQL.

Example 58: Consider table given below, which contains the detailed of accounts
of account holders of bank.

Table: Account_holder

A stored function is given to return the balance of an account holder. The
account number is passed as a parameter in this function.

Function: get_balance ()

 /* This is a stored function which returns
the total balance of all saving accounts*/

CREATE or replace FUNCTION get_balance (no IN
NUMBER)

 RETURN NUMBER

 IS acc_bal NUMBER (11 , 2) ;

BEGIN

 SELECT sum (ac_balance) INTO acc_bal from
account_holder WHERE acc_no = no ;

RETURN (acc_bal) ;

END;

/

The given function, get_balance () has a parameter of number type to accept
the account holder’s account number. The acc_bal is a variable in which the balance
of the given account holder is stored and returned to the caller program.

NOTES

Self-Instructional
Material 73

RDBMS LabSave file

Save the above file with the name account_balance.SQL

Compile Function

To execute any stored procedure it is necessary to compile it. To compile a
procedure the following command is used:

The syntax is as follows:

SQL> @ function_name ;

For example,

 SQL> @ account_balance ;

Example 59: Based on library information system.

List of tables:

Book_Details

Binding_Details

Category_Details

Borrower_Details

Student_Details

Staff_Details

Student_Details

Shelf_Details

Library Management System (SQL Commands)

Creating table “Book_Details”:

1. CREATE TABLE Book_Details

2. (

3. ISBN_Codeint PRIMARY KEY,

4. Book_Titlevarchar(100),

5. Language varchar(10),

6. Binding_Idint,

7. No_Copies_Actualint,

8. No_Copies_Currentint,

RDBMS Lab

NOTES

Self-Instructional
74 Material

9. Category_idint,

10. Publication_yearint

11.)

Inserting Some Data in “Book_Details”:

1. INSERT INTO Book_details

2. VALUES(‘0006’,’Programming Concept’,
’English’,2,20,15,2,2006);

Creating table “Binding_Details”:

1. CREATE TABLE Binding_details

2. (

3. Binding_idint PRIMARY KEY,

4. Binding_Namevarchar(50)

5.)

Describe Binding table:

Describe binding_details;

Inserting Some data in Binding Table:

1. I N S E R T I N T O B i n d i n g _ D e t a i l s V A L U E S
(1,’McGraw Hill);

2. I N S E R T I N T O B i n d i n g _ D e t a i l s V A L U E S
(2,’BPB Publication’);

All Data of Binding Table:

1. select *from binding_Details

Creating Relationship between Book and Binding Table:

1. ALTER TABLE Book_details

2. ADD CONSTRAINT Binding_ID_FK FOREIGN KEY(
Binding_Id) REFERENCES Binding_Details(Binding_Id);

NOTES

Self-Instructional
Material 75

RDBMS LabChecking Relationship:

1. selectb.Book_Title, e.binding_name

2. fromBook_Detailsb, Binding_Details e

3. whereb.binding_id = e.binding_id;

Creating Category Table:

1. CREATE TABLE Category_Details

2. (

3. Category_Idint PRIMARY KEY,

4. Category_Namevarchar(50)

5.)

Inserting some data in Category Table:

1. I N S E R T I N T O C A T E G O R Y _ D E T A I L S V A L U E S
(1,’Database’);

2. INSERT INTO CATEGORY_DETAILS VALUES(
2,’Programming Language’);

Building Relationship between Book & Category Table:

1. ALTER TABLE Book_details

2. ADD CONSTRAINT Category_Id_FK FOREIGN KEY
(Category_Id) REFERENCES Category_Details(Category_Id);

Checking Relationship:

1. Select b.Book_Title,e.Category_Name

2. From Book_Detailsb,Category_Details e

3. whereb.binding_id = e.Category_id;

RDBMS Lab

NOTES

Self-Instructional
76 Material

Creating Borrower Table:

1. CREATE TABLE Borrower_Details

2. (

3. Borrower_Idint PRIMARY KEY,

4. Book_Idint,

5. Borrowed_From date,

6. Borrowed_TO date,

7. Actual_Return_Date date,

8. Issued_byint

9.)

Inserting some data in Category Table:

1. Insert into BORROWER_DETAILS VALUES(1,0004,’
01-Aug-2014',’7-Aug-2014',’7-Aug-2014',1)

2. Insert into BORROWER_DETAILS VALUES(2,6,’02-
Aug-2014',’8-Aug-2014',NULL,1)

Building Relation between Book & Borrower Table:

1. A L T E R T A B L E B o r r o w e r _ d e t a i l s A D D
CONSTRAINT Book_Id_FK FOREIGN KEY(Book_Id)
REFERENCES Book_Details(ISBN_Code);

Checking Relationship:

1. Select Borrower_Details.Borrower_id,
Book_Details.Book_title

2. From Borrower_Details,Book_Details

3. Where Borrower_Details.book_id=Book_Details.
ISBN_Code

NOTES

Self-Instructional
Material 77

RDBMS Lab1. ALTER TABLE Borrower_Details

2. ADD CONSTRAINT Issued_by_FK FOREIGN KEY(
Issued_by) REFERENCES Staff_Details(Staff_Id);

Creating Staff Table:

1. CREATE TABLE Staff_Details

2. (

3. Staff_Idint PRIMARY KEY,

4. Staff_Namevarchar(50),

5. Password varchar(16),

6. Is_Adminbinary_float,

7. Designation varchar(20)

8.)

Inserting some data in Staff Table:

1. I n s e r t i n t o S T A F F _ D E T A I L S v a l u e s
(1,’Tarek Hossain’,’1234asd’,0,’Lib_mgr’);

2. I n s e r t i n t o S T A F F _ D E T A I L S v a l u e s
(2,’Md.Kishor Morol’,’iloveyou’,0,’Lib_clr’);

All Data of Staff table:

1. select * from staff_details

Creating Student Table:

1. Create TABLE Student_Details

2. (

3. Student_Idvarchar(10) PRIMARY KEY,

4. Student_Namevarchar(50),

5. Sex Varchar(20),

RDBMS Lab

NOTES

Self-Instructional
78 Material

6. Date_Of_Birth date,

7. Borrower_Idint,

8. Department varchar(10),

9. contact_Numbervarchar(11)

10.)

Inserting Some Data in Student Table:

1. Insert into STUDENT_DETAILS values (’13-23059-
1 ' , ’ A h m e d , A l i ’ , ’ M a l e ’ , ’ 0 5 - O c t -
1995',1,’CSSE’,’01681849871');

2. Insert into STUDENT_DETAILS values (’13-23301-
1',’MOrol MD.Kishor’,’Male’,’03-Jan-
1994',2,’CSE’,’01723476554');

All Data of Student Table:

1. select *from student_details;

Building Relationship between student and Borrower table:

1. ALTER TABLE student_details

2. ADD CONSTRAINT borrower_id_FK FOREIGN KEY(
Borrower_Id) REFERENCES Borrower_Details(Borrower_Id);

Checking Full Relationship:

1. select student.student_id, student.student
_name, book.Book_Title, staff.staff_name, b.Borrowed_To

2. f r o m s t u d e n t _ D e t a i l s s t u d e n t , S t a f f _
Detailsstaff, Borrower_Detailsb, book_details book

3. wherestudent.Borrower_id = b.Borrower_i
d and book.ISBN_Code = b.book_id and b.Issued_by = staff.Staff_id;

NOTES

Self-Instructional
Material 79

RDBMS LabAdding Shelf Table:

1. Create Table Shelf_Details

2. (

3. Shelf_idint PRIMARY KEY,

4. Shelf_Noint,

5. Floor_Noint

6.);

Inserting Some Data from Shelf Table:

1. Insert into Shelf_DetailsValues(1, 1, 1);

2. Insert into Shelf_DetailsValues (2, 2, 10001);

3. Insert into Shelf_DetailsValues (3, 1, 10002);

All Data in Shelf Table:

1. select*from Shelf_Details;

Adding Relationship between Shelf and Book Table:

1. ALTER TABLE Book_Details

2. ADD(Shelf_Idint);

3. UPDATE Book_Details set Shelf_Id = 1

4. where ISBN_CODE = 4;

5. UPDATE Book_Details set Shelf_Id = 2

6. where ISBN_CODE = 6;

7. ALTER TABLE Book_Details

8. ADD CONSTRAINT Shelf_Id_FK FOREIGN KEY
(Shelf_Id) REFERENCES Shelf_Details(Shelf_Id);

RDBMS Lab

NOTES

Self-Instructional
80 Material

Combine all Relationship:

1. select student.student_id, student.student
_name, book.Book_Title, staff.staff_name, b.Borrowed_To,
shelf.shelf_No

2. f r o m s t u d e n t _ D e t a i l s s t u d e n t ,
Staff_Detailsstaff, Borrower_Detailsb,
book_detailsbook, Shelf_Details shelf

3. wherestudent.Borrower_id = b.Borrower_
id and book.ISBN_Code = b.book_id and b.Issued_by
= staff.Staff_id and book.Shelf_Id = shelf.Shelf_Id;

	Prelims.pdf
	Introduction.pdf
	Unit 1.pdf

